BIOMIMETIC GERMACRENE-HUMULENE REARRANGEMENT

Valentin Enev and Elena Tsankova

Institute of Organic Chemistry with Centre of Phytochemistry Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

Summary: The boron trifluoride catalyzed rearrangement of 7,11-epoxygermacrone $(\underline{7})$ provided the new diketone in high yield. This transformation represents the first biomimetic chemical conversion of a germacrane into a humulane skeleton.

The cation <u>1</u> is generally considered as the biogenetic precursor of sesquiterpenoids with germacrane and humulane carbon skeleton¹. Recently, a nonenzymatic generation of the humulene cation <u>2</u> and its conversion into germacrene derivatives has been reported². We outline here the reverse case - generation of the germacreme cation <u>3</u> and subsequent expansion of the 10-membered ring to the humulane skeleton.

The most suitable functional equivalent of the cation 3 was considered to be 7,11-epoxygermacrone ($\underline{7}$). The latter was prepared from germacrone ($\underline{4}$) as outlined in Scheme I, as the direct epoxidation with H_2O_2 in alkali medium would lead to isomerisation of the starting material³. Accordingly, LAH reduction of $\underline{4}^3$ followed by Sharpless epoxidation⁴ gave the cis-epoxyalcohol $\underline{5}^5$ as colourless needles (m.p. 56-57°C). Subsequent oxidation with PDC-DMF⁶ afforded the desired epoxide $\underline{7}$ (m.p. 50-52°C) in 92% overall yield⁷. 1830

Treatment of $\underline{7}$ with equimolar amounts of $BF_3 \cdot Et_2^0$ at $0^{\circ}C$ for 70 hours followed by chromatography on SiO₂ (petroleum ether-ether 4:1) provided the humulene diketone <u>8</u> (m.p. 80-81°C) in 75% yield⁸. The proposed pathway for the formation of <u>8</u> (Scheme II) includes a regioselective scission of the oxirane and ring expansion due to acyl migration. The latter can be regarded as a particular case of the known rearrangement of \measuredangle, β -epoxyketones in which the electron-withdrawing group migrates to an electron-deficient centre⁹.

It was interesting to note that when the carbonyl function in $\underline{7}$ was replaced by an acetoxy group, i.e. compound $\underline{6}^{10}$, no cation of type $\underline{3}$ was generated upon treatment with BF_3 . Et $_2^0$. In this case the germacrene derivative $\underline{9}$ was obtained in 78% yield¹¹ after chromatographic purification (SiO₂, petroleum ether-ether 5:1). The formation of $\underline{9}$ can be viewed as arising from C-7/0 bond cleavage with the cation \underline{A} as an intermediate (Scheme III).

Scheme III

Table	1.	PMR	(250	MHz)	data	of	compounds	5	-	9	in	CDC1,,	ppm,	TMS	(J	in	Hz)

Proton	5	<u>6</u>	<u>7</u> *	<u>8</u>	<u>9</u>
H–1	4.81 dbr (10)	4.86 dbr (11.5)	5.14 dbr (11)	4.94 dd (8, 1.5)	4.79 dbr (10)
H-5	4.50 dbr (11)	4.54 dbr (12)	5.00 dd (12, 2)	4.76 td (8, 1.5)	4.51 dd (12, 3)
H-6	2.63 dd (11, 15)	2.81 dd (12, 15)	3.00 dd (12, 14)	3.20 dbr	3.16 dd (13, 12)
H-6'	2.2-2.3**	2.35 dbr (15)	1.94 dd (14, 2)	(8)	2.56 dd (13, 12)
H-8	3.99 dd (10, 2)	4.98 dbr (10)		-	4.19 d (11)
H-9	2.51 dd (10, 13)	2.66 dd (10, 13)	3.80 dbr (10)	3.11 sbr	2.9-3.0**
H-9	2.2-2.3**	2.1-2.2**	2.3-2.4**		1.7-1.8**
H -12			1.16 sbr		1.26 s
H-13	1.55 s	1.39 s	1.39 sbr	1.41 s	1.51 s
H-14	1.59 s	1.59 s	1.60 s	1.50 sbr	1.64 s
H-15	1.46 s	1.45 s	1.40 s	1.56 sbr	1.47 s
OAc	-	2.05 s	-	-	2.22 s

*run at 50°C

** The assignment is based on decoupling experiments

Table 2. CMR (62.9 MHz) data of 8 and 9 in CDCl3, ppm, TMS

Carbon	<u>8</u>		<u>9</u>		Carbon <u>8</u>			<u>9</u>		
C-1	130.40	d*	130.67	d	C-9	40.49	t	28.92	t	
C – 2	26.33	t	24.18	t	C-10	139.06	s	136.79	s	
C – 3	40.09	t	39.71	t ^b	C-11	60.65	s	86.72	s	
C – 4	127.28	s	129.26	S	C-12	23.07	q	25.05	q^{c}	
C-5	116.84	d	121.20	d	C-13	23.07	q	24.08	q ^C	
C-6	47.91	t	38.95	t ^b	C-14	17.02	q	17.32	q	
C-7	203.83	sa	89.47	S	C -1 5	15.72	q	15.79	q	
C – 8	204.68	sa	84.58	d	OAc	-		170.04	s	
								21.47	q	

*Multiplicities confirmed by DEPT measurment

^{a-c}Assignment may be interchanged

1832

Acknowledgement: The authors wish to thank Dr. M. Budesinsky, Institute of Organic Chemistry and Biochemistry, Czechoslovak Academy of Sciences, Prague, Czechoslovakia for the measurment of PMR and CMR spectra of 8.

References and Notes

- J.B. Hendrickson, <u>Tetrahedron</u>, <u>7</u>, 82 (1959); W. Parker, J.S. Roberts and R. Ramage, Quart.Rev., 21, 331 (1967).
- 2. A. Itoh, H. Nozaki and H. Yamamoto, Tetrahedron Letters, 2903 (1978).
- I. Ognyanov, D. Ivanov, V. Herout, M. Horak, J. Pliva, F. Sorm, <u>Coll.Czech</u>. <u>Chem.Commun.</u>, 23, 2033 (1958).
- 4. K.B. Sharpless and R.C. Michaelson, J.Am.Chem.Soc., 95, 6136 (1973).
- 5. compound <u>5</u>: IR: 3500, 1660 cm⁻¹; MS: 236 (M⁺); PMR: in Table 1.
- 6. E.J. Corey and G. Schmidt, <u>Tetrahedron Letters</u>, 399 (1979).
- 7. compound <u>7</u>: IR: 1695, 1660 cm⁻¹; MS: 234 (M⁺); PMR: in Table 1.
- 8. compound <u>B</u>: IR: 1713, 1690 cm⁻¹; MS: 234 (M⁺); PMR: in Table 1; CMR: in Table 2.
- 9. H.O. House, <u>J.Am.Chem.Soc.</u>, <u>76</u>, 1235 (1954); H.O. House and D.J. Reif, <u>ibid.</u>, <u>77</u>, 6525 (1955); H.O. House, <u>ibid.</u>, <u>78</u>, 2298 (1956); H.O. House and R,L. Wasson, <u>ibid.</u>, <u>79</u>, 1488 (1967); H. Hart and P. Lavrik, <u>J.Org</u>. <u>Chem.</u>, <u>39</u>, 999 (1974); J.M. Domagala, R.D. Bach and J. Wemple, <u>J.Am.Chem</u>. <u>Soc.</u>, <u>98</u>, 1976 (1976).
- 10. compound <u>6</u>: m.p. 51-53^oC; IR: 1750, 1670, 1250 cm⁻¹; MS: 278 (M⁺); PMR: in Table 1.
- 11. compound <u>9</u>: m.p. $81-82^{\circ}C$; IR: 1737, 1226, 1077, 1058, 1019 cm⁻¹; MS: 278 (M⁺); PMR: in Table 1; CMR: in Table 2; the trans disposition of H-8 and the acetoxy group, as depicted in <u>9</u>, is established by NOE experiments. (Received in UK 12 January 1988)